首页bt365体育在线投注365体育投注在线体育赌博365体育投注串关规则联系方式使用帮助常见问题ENGLISH
bt365体育在线投注
位置:首页 >> 正文
漂浮型TiO2/石墨烯复合催化剂的制备及其性能
作者:耿雅甜1 2 3 4 王雷磊1 2 3 4  磊1 2 3 4 王旭东1 2 3 4 许岐斌1 2 3 4 
单位:(1. 西安建筑科技大学环境与市政工程学院 西安 710055 2. 陕西省膜分离技术研究院  西安 710055 3. 陕西省膜分离重点实验室 西安 710055 4. 陕西省环境工程重点实验室 西安 710055) 
关键词:二氧化钛 石墨烯 负载 空心玻璃微珠 水热法 
分类号:X132
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 以空心玻璃微珠(HGM)为载体,采用水热法制备漂浮型石墨烯(RGO)-TiO2复合光催化剂。首先将超声分散后的氧化石墨烯(GO)负载于经预处理后的HGM表面,而后以钛酸四丁酯为前驱体,在不使用还原剂条件下采用一步水热法制备出TiO2/RGO/HGM复合光催化剂。研究了压力、GO (RGO)含量对复合光催化剂性能的影响。以罗丹明B (RhB)为降解对象分析了复合光催化剂的光催化降解效果。结果表明:GO成功负载于空心玻璃微珠表面,并通过水热过程在空心玻璃微珠表面原位还原生成RGO,二氧化钛形成RGO/HGM复合结构。此后,锐钛矿型TiO2在RGO/HGM复合结构表面自组装成核并均匀负载从而形成TiO2/RGO/HGM复合光催化剂。与TiO2/HGM复合材料相比,TiO2/RGO/HGM复合材料具有增强的光催化降解活性,再循环后具有良好的降解效果。此外,还提出了加载在HGM表面的RGO和TiO2的可能机理和形成过程。

  In order to improve the photocatalytic activity of the catalyst, a floating graphene (RGO)-TiO2 composite photocatalyst was prepared by a hydrothermal method with hollow glass microspheres (HGM) as a carrier. An ultrasound-dispersed graphene oxide (GO) was firstly loaded on the pretreated HGM surface and then TiO2/RGO/hollow glass microsphere composite was prepared by a simple one-step hydrothermal method without any reducing agent with tetrabutyl titanate as a precursor. The effects of pressure and GO mass on TiO2/RGO/HGM composite were investigated. The photocatalytic degradation of the composite photocatalyst was analyzed with Rhodamine B as a degradation target. The results show that graphene oxide (GO) can be loaded on the surface of hollow glass microspheres, and then reduced in situ on the surface of HGM by hydrothermal process, thus forming RGO/HGM composite structure. Afterwards, anatase TiO2 self-assembles into nuclei on the surface of RGO/HGM composite structure and uniformly loads to form a TiO2/RGO/HGM composite photocatalyst. Compared to TiO2/HGM composites, TiO2/RGO/HGM composite has an enhanced photocatalytic degradation activity and a good degradation effect after recycling. In addition, the possible mechanism and formation process of RGO and TiO2 loaded on the surface of HGM were also proposed.

基金项目:
陕西省重点科技创新团队计划项目(2017KCT-19-01);陕西省重点产业链(群)项目(2017ZDCXL-GY-07-01);陕西省技术创新引导专项 (2018HJCG-18)项目。
作者简介:
参考文献:

 [1] FUJISHIMA A, HONDA K. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature, 1972, 238 (1): 238?245.

[2] CUNHA D L, KUZNETSOV A, ACHETE C A, et al. Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process[J]. Peerj, 2018, 6(3): e4464?e4464.
[3] XING, Z, ZHANG J, CUI J, et al. Recent advances in floating TiO2 -based photocatalysts for environmental application[J]. Appl Catal B: Environ, 2018, 225: 452–467.
[4] 窦艳鹏, 孙淑芹, 吴湘锋. 局性能空心玻璃微珠的制备及其表面改性进展[J]. 中国粉体工业, 2012(1): 7?13.
DOU Yanpeng, SUN Shuqin, WU Xiangfeng. Chin Powder Ind (in Chinese), 2012(1): 7?13.
[5] JACKSON N B, WANG C M, LUO Z, et al. Attachment of TiO2 powders to hollow glass microbeads: Activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde[J]. Cheminform, 1991, 138: 3660?3664.
[6] YAN H, WANG Y, AN Z, et al. The super-hydrophobic IR-reflectivity TiO2 coated hollow glass microspheres synthesized by soft-chemistry method[J]. J Phys Chem Sol, 2016, 98: 43?49.
[7] 陆洪彬, 冯春霞, 李文丹, 等. TiO2修饰空心玻璃微珠隔热涂料的制备及其性能表征[J]. 化工新型材料, 2010, 38(8): 81?83.
LU Hongbin, FENG Chunxia, LI Wendan, et al. New Chem Mater(in Chinese), 2010, 38(8): 81?83.
[8] 祝思频, 王春英, 王俊蔚, 等. Gd掺杂锐钛矿型TiO2光催化剂的制备及降解苯甲羟肟酸活性[J]. 硅酸盐学报, 2017,45 (10): 495?1502.
ZHU Sipin, WANG Chunying, WANG Junwei, et al. J Chin Ceram Soc, 2017, 45(10): 1495?1502.
[9] BEHARA D K, UMMIREDDI A K, ARAGONDA V, et al. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction[J]. Phys Chem Chem Phys, 2016, 18 (12): 8364?8377.
[10] 赵学国, 李家科, 黄丽群. W、N和C共掺杂TiO2催化剂的制备及其光解水析氢性能[J]. 硅酸盐学报, 2018, 46(1): 78?84.
ZHAO Xueguo, LI Jiake, HUANG Liqun. J Chin Ceram Soc, 2018, 46(1): 78?84..
[11] 鲁文升, 肖光参, 李旦振, 等. Pt/InVO4/TiO2可见光催化剂的制备及性能研究[J]. 无机化学学报, 2005, 21(10): 1495?1499.
LU Wensheng, XIAO Guangshen, LI Danzhen, et al. J Inorg Chem(in Chinese), 2005, 10(21): 1495?1499.
[12] SONG J, WANG X, BU Y, et al. Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO2 on fly ash cenospheres[J]. Appl Surf Sci, 2017, 391: 236?250.
[13] IWASAKI M, HARA M, KAWADA H, et al. Cobalt ion-doped TiO2 photocatalyst response to visible light[J]. J Colloid Interface Sci, 2000, 224(1): 202?204.
[14] ASAHI R, MORIKAWA T, OHWAKI T. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269?271.
[15] LONG Y, LU Y, HUANG Y, et al. Effect of C60 on the photocatalytic activity of TiO2 nanorods[J]. J Phys Chem C, 2009, 113(31): 13899?13905.
[16] QI K, SELVARAJ R, FAHDI T A, et al. Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study[J]. Appl Surf Sci, 2016, 387: 750?758.
[17] TAMILSELVI S, ASAITHAMBI M, P SIVAKUMAR. Nano- TiO2- loaded activated carbon fiber composite for photodegradation of a textile dye[J]. Desalin Water Treat, 2016, 57(33): 1?8.
[18] GEIM A K. Graphene:Status and Prospects. in International of Vacuum Congress. 2010.
[19] 朱永法. 表面杂化作用及其高活性光催材料研究进展[C]//全国太阳能光化学与光催化学术会议. 昆明,2010.
ZHU Yongfa. Research progress on surface hybridization and its high activity photocatalytic materials[C]//. National Solar Photochemistry and Photocatalysis Academic Conference. Kunming, 2010.
[20] MEYER J C, GEIM A K, KATSNELSON M I. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60?63.
[21] QIU H J, CHEN L Y, ITO Y, et al. An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene[J]. Nanoscale, 2016, 8(43): 18551.
[22] SUN Z, CHANG H. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. Acs Nano, 2014, 8(5): 4133?4156.
[23] GOMEZRUIZ B, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. J Hazard Mater, 2017, 344: 950?957.
[24] ZHANG S, JIAN X, HU J, et al. Interfacial growth of TiO2-rGO composite by Pickering emulsion for photocatalytic degradation[J]. Langmuir, 2017, 33(20): 5015–5024.
[25] MUTUA F N, LIN P, KOECH J K, et al. Surface modification of hollow glass microspheres[J]. Mater Sci Appl, 2012, 12(3): 856?860.
[26] ZOU Z G, YU H J, LONG F, et al. Preparation of Graphene Oxide by Ultrasound-Assisted Hummers Method[J]. Chin J Inorg Chem, 2011, 27(9): 1753?1757.
[27] WANG X, MENG S, ZHANG X, et al. Multi-type carbon doping of TiO2 photocatalyst[J]. Chem Phys Lett, 2007, 444(4): 292?296.
[28] ZHANG X Y, LI H P, CUI X L, et al. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. J Mater Chem, 2010, 20(14): 2801?2806.
[29] CORTI H R, TREVANI L N, ANDERKO A. Aqueous Systems at Elevated Temperatures & Pressures[M].  NewYork: Academic Press, 2004: 321?375.
[30] ROY R, WHITE W B. High temperature solution (flux) and high pressure solution (hydrothermal) crystal growth[J]. J Cryst Growth, 1968, 3(68): 33?42.
[31] 王艳, 刘畅, 柏扬,等. 水热反应釜中高温高压离子水溶液热力学性质[J]. 化工学报, 2006, 57(8): 1856?1864.
WANG Yan, LIU Chang, BAI Yang, et al. J Chem Ind Eng(in Chinese), 2006, 57(8): 1856?1864.
[32] 吴凤芹, 姚超, 王茂华, 等. 不同晶型纳米二氧化钛的水热合成[J]. 日用化学工业, 2008, 38(6):370–373.
WU Fengqin, YAO Chao, WANG Maohua, et al. China Surf Deterg Cosm (in Chinese), 2008, 38(6):370–373.
服务与反馈:
文章下载】【加入收藏
bt365体育在线投注_365体育投注在线体育赌博_365体育投注串关规则《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com