首页bt365体育在线投注365体育投注在线体育赌博365体育投注串关规则联系方式使用帮助常见问题ENGLISH
bt365体育在线投注
位置:首页 >> 正文
第一性原理计算Al原子及空位掺杂6H-SiC的电子结构和磁性能
作者:张明军1 黄敬涛2 3  龙2 余伟阳3 徐永豪3 陶华龙4 祝令豪2 王朋涛2 张战营2 
单位:(1. 河南理工大学机械与动力工程学院 河南 焦作 454000  2. 河南省环境友好型无机材料重点实验室培育基地 河南理工大学材料科学与工程学院 河南 焦作 454000  3. 河南理工大学物理与电子信息学院 河南 焦作 454000  4. 辽宁省铁道交通关键材料重点实验室 大连交通大学材料科学与工程学院 辽宁 大连116028) 
关键词:稀磁半导体 电子结构 磁性 第一性原理 碳化硅 
分类号:O474
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 基于密度泛函理论的第一性原理,研究了6H-SiC的不同掺杂体系如碳空位(VC)掺杂体系、硅空位(VSi)掺杂体系及(Al, VSi)共掺杂体系的电子结构和磁性。结果表明:单独的VC或VSi掺杂体系具有微弱的磁性,而(VC, VSi)共掺杂体系呈现出强烈的磁性,其原因归结于VC和VSi之间强烈的耦合效应,致使碳原子附近的空位产生强烈的自旋极化。虽然在Al原子单独掺杂6H-SiC的体系中没有发现磁性,但是(Al, VSi)共掺杂体系具有明显的磁性,表明磁性并非源于Al原子的3p轨道,而是来源于C原子的2p轨道。研究结果为6H-SiC在稀磁半导体自旋电子器件上的潜在应用提供理论依据。

 Using the first-principles method based on density functional theory (DFT), we studied the electronic structures and magnetic properties of 6H-SiC with different doped systems, such as a C vacancy (VC)-doped system, a Si vacancy (VSi)-doped system, and an (Al, VSi)-codoped system. The results show that the single VC- or V Si-doped 6H-SiC system exhibits weak magnetism, while the (VC, VSi)-codoped 6H-SiC system exhibits strong magnetic properties because of the intense coupling between VC and VSi, leading to nearby C vacancy atoms producing strong spin polarization. Although the Al atom alone does not induce magnetism in the Al-doped 6H-SiC system, the (Al, VSi)-codoped 6H-SiC system appears to  have magnetic properties, indicating that the origin of magnetism is not from the Al:3p orbital but from the spin polarization of the C:2p orbital. These results provide a route for potential applications of dilute magnetic semiconductors in spintronic devices by employing doped 6H-SiC.

基金项目:
国家自然科学基金项目(U1704255,21303041);河南省自然科学基金项目(182102210305)。
作者简介:
参考文献:

 [1] UTI I, FABIAN J, SARMA S D. Spintronics: Fundamentals and applications[J]. Rev Mod Phys, 2004, 76(2): 323–410.

[2] AKINAGA H, OHNO H. Semiconductor Spintronics[J]. IEEE Trans Nanotechnol, 2002, 1: 19–31.
[3] SATO K, BERGQVIST L, KUDRNOVSK J. First-principles theory of dilute magnetic semiconductors[J]. Rev Mod Phys, 2014, 82(2): 1633–1690..
[4] PRAKASH G, CAPANO MA, BOLEN M L, et al. AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC[J]. Carbon, 2010, 48: 2383–2393.
[5] AGHDASSI N, OSTENDORF R, KRGER P. Angle-resolved inverse photoemission of H-etched 6H-SiC (0001)[J]. Surf Sci, 2011, 605: 788–792.
[6] TORPO L, MARLO M, NIEMINEN R M. Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC[J]. J Phys Condens Matter, 2001, 13: 6203–6231. 
[7] OKAMOTO M, SUZUKI S, KATO M. Lateral RESUR F MOSFET fabricated on H-SiC (0001) C-face[J]. IEEE Electron Device Lett, 2004, 25: 405–407.
[8] MATSUDA T, TAGAMI M, MITSUHARA K, et al. 3C-SiC (001)-3×2 reconstructed surface analyzed by high-resolution medium energy ion scattering[J]. Surf Sci, 2012, 606: 1942–1947.
[9] ITO T, AKIYAMA T, NAKAMURA K. A simple approach to the polytypism in SiC[J]. J Cryst Growth, 2013, 362: 207–210.
[10] BOCKSTEDTE M, MATTAUSCH A, PANKRATOV O. Ab initio study of the migration of intrinsic defects in 3C-SiC[J]. Phys Rev B, 2003, 68: 205201.
[11] KUANG J, JIANG P, RAN F, et al. Conductivity dependent dielectric properties and microwave absorption of Al-doped SiC whiskers[J]. J Alloy Compd, 2016, 687: 227–231.
[12] CHENG W, YING M, ZHANG F, et al. Density functional study on helium and hydrogen interstitials in silicon carbide[J]. Nucl Instrum Methods Phys Res Sect B, 2011, 269, 2067–2074. 
[13] KANUNGO J, ANDERSON M, DARMASTUTI Z, et al. Development of SiC-FET methanol sensor[J]. Sensor Actuat B, 2011, 160: 72–78.
[14] LARA A, MUOZ A. Dislocation microstructure of 4H-SiC single crystals plastically deformed around the transition temperature[J]. J Eur Ceram Soc, 2012, 32: 495–502.
[15] LIN L, LIU T , ZHANG Z Y. Vacancy induced magnetism in N-doped 4H-SiC by first-principle calculations[J]. Solid State Sci, 2015, 49: 78–82.
[16] HE X, HE T, WANG Z. Neutral vacancy-defect induced magnetism in SiC monolayer[J]. Phys E: Low Dimens Syst Nanostruct, 2010, 42: 2451–2454.
[17] DUIJN ARNOLD A V, ZONDERVAN R, SCHMIDT J. Electronic structure of the N donor center in 4H-SiC and 6H-SiC[J]. Phys Rev B, 2001, 64: 085206–085223.
[18] HE M, HE X, LIN L. Study on spin polarization of non-magnetic atom in diluted magnetic semiconductor: The case of Al-doped 4H-SiC[J]. Solid State Commun, 2014, 197: 44–48.
[19] STROMBERG F, KEUNE W, CHEN X. The origin of ferromagnetism in Fe ion-implanted semiconducting 6H-polytype silicon carbide[J]. J Phys: Condens Matter, 2006, 18(43): 9881–9900. 
[20] WANG Y, LIU Y, WENDLER E. Defect-induced magnetism in SiC: Interplay between ferromagnetism and para-magnetism[J]. Phys Rev B, 2015, 92: 174409(1–11). 
[21] SONG B, BAO H, LI H. Observation of glassy ferromagnetism in Al-doped 4H-SiC[J]. J Am Chem Soc, 2009, 131: 1376–1377.
[22] LIN X, PAN F C. The Electronic structures and magnetism in Al doped 4H-SiC: The first-principles calculation[J]. J Supercond Nov Magn, 2014, 27: 1513–1516.
[23] GYAWALI G, JOSHI B, TRIPATHI K. Effect of Ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni-SiC composite coatings[J]. J Mater Eng Perform, 2017, 26: 4462–4469.
[24] VIVONA M, GRECO G, BONGIORNO C, et al. Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC[J]. Appl Surf Sci, 2017, 420: 331–335.
[25] LI Y, LI J, CHEN C. Facile thermal explosion synthesis and optical properties of Al-doped flatted 3C-SiC microcrystals with 4H-SiC quantum interlayers[J]. Appl Surf Sci, 2012, 259: 21–28.
[26] SONG B, BAO H, LI H. Magnetic properties of Mn-doped 6H-SiC[J]. Appl Phys Lett, 2009, 94: 102508(1–3). 
[27] GUAN L, TAO J, HUAN C. First-principles study on ferromagnetism in nitrogen-doped In2O3[J]. Appl Phys Lett, 2009, 95: 012509(1–3). 
[28] SEGALL M, LINDAN P, PROBERT M. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys: Condens Matter, 2002, 14: 2717–2744. 
[29] PERDEW J, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. 
[30] LIN L, ZHANG Z Y. Density functional study on ferromagnetism in (Al, Fe)-codoped 4H-SiC[J]. Compos Mater Sci, 2014, 87: 72–
服务与反馈:
文章下载】【加入收藏
bt365体育在线投注_365体育投注在线体育赌博_365体育投注串关规则《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com