首页bt365体育在线投注365体育投注在线体育赌博365体育投注串关规则联系方式使用帮助常见问题ENGLISH
bt365体育在线投注
位置:首页 >> 正文
AgBr?Ag3PO4?CSs三元复合光催化剂的制备及性能
作者:樊苗苗 樊国栋 郑少芳 文美婷 
单位:(陕西科技大学化学与化工学院 陕西省轻化工助剂重点实验室 西安 710021) 
关键词:磷酸银 溴化银 碳球 复合光催化剂 
分类号:O649
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 以AgNO3、KBr、Na2HPO4和碳球(CSs)为原料,通过共沉淀法制备了高活性的AgBr?Ag3PO4?CSs三元复合光催化剂。利用X射线衍射、场发射扫描电子显微镜、紫外-可见漫反射光谱和X射线光电子能谱等对复合催化剂的结构、形貌、光吸收范围及价态进行了表征,通过可见光下降解罗丹明B(RhB)和苯酚对复合催化剂的性能进行了考察。结果表明:以CSs为载体,将AgBr和Ag3PO4负载在CSs上,当n(AgBr):n(Ag3PO4)=4:100时,所得的4%AgBr?Ag3PO4?CSs复合催化剂光催化效果最佳,可见光照50 min时,对RhB的降解率达到99.3%;光照60 min时,降解率达到99.5%,几乎降解完全。对苯酚也具有超强的降解能力,捕获剂实验表明空穴为主要活性物种,并且所制备的复合光催化剂循环使用5次后时仍具有较高的光催化活性。

 A ternary composite photocatalyst AgBr?Ag3PO4?CSs was synthesized by a coprecipitation method using carbon spheres (CSs), KBr, NaH2PO4 and AgNO3 as starting materials. The structure, morphology, light absorption range and valence state of the prepared photocatalyst were characterized by X-ray diffraction, field-emission scanning electron microscopy, ultraviolet-visible diffuse-reflectance spectroscopy and X-ray photoelectron spectroscopy, respectively. The photocatalytic performance of the composites was investigated via the decomposition of Rhodamine B (RhB) and phenol under visible light irradiation. The results show that 4%AgBr?Ag3PO4?CSs has an optimum photo-degradation performance when CSs are used as carriers to load AgBr and Ag3PO4 and the molar ratio of AgBr to Ag3PO4 is 4%. The degradation efficiency of RhB is 99.3% after 50 min reaction, and reaches to 99.5% after 60 min reaction, indicating that RhB can be almost decomposed. This photocatalyst has superior degradation efficiency to phenol. Based on the capture agent experiments, some holes (h+) are the main active species. In addition, a good photocatalytic activity is also retained after 5 times of cycles.

基金项目:
陕西省工业科技攻关项目(2016GY-142);陕西省教育厅重点实验室科研计划(14JS015);陕西科技大学研究生创新基金项目。
作者简介:
参考文献:

 [1] REZA K M, KURNY A, GULSHAN F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review[J]. Appl Water Sci, 2017, 7(S3/4): 1–10.

[2] MOUSSA H, GIROT E, MOZET K, et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis[J]. Appl Catal B, 2016, 185(4): 11–21.
[3] HU C, LAN Y, QU J, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. Cheminform, 2006, 37(29): 4066–4072.
[4] YI Z G, YE J H, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nat Mater, 2010, 9(7): 559–564.
[5] BI Y, OUYANG S, CAO J, et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Phys Chem Chem Phys, 2011, 13(21): 10071–10075.
[6] AMORNPITOKSUK P, SUWANBOON S. Photocatalytic decolorization of methylene blue dye by Ag3PO4–AgX (X = Cl−, Br−, and I−) under visible light[J]. Adv Powder Technol, 2014, 25(3): 1026–1030.
[7] TATSUMA T, TAKADA K. UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel [J]. Adv Mater, 2007, 19(9): 1249–1251.
[8] ANTONIADOU M, LIANOS P. Production of electricity by photoelectrochemical oxidation of ethanol in a Photo Fuel Cell [J]. Appl Catal B, 2010, 99(1): 307–313.
[9] YAMADA H, BHATTACHARYYA A, MAIER J. Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina[J]. Adv Funct Mater, 2010, 16(4): 525–530.
[10] WANG H, ZOU L, SHAN Y, et al. Ternary GO/Ag3PO4/AgBr composite as an efficient visible-light-driven photocatalyst[J]. Mater Res Bull, 2018, 97: 189–194.
[11] WANG X, UTSUMI M, YANG Y, et al. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation[J]. Appl Surf Sci, 2015, 325: 1–12.
[12] WANG S, LI D, SUN C, et al. Highly efficient photocatalytic treatment of dye wastewater via visible-light-driven AgBr–Ag3PO4/MWCNTs[J]. J Mol Catal A: Chem, 2014, 383/384(s 383/384):128–136.
[13] JIA C, XIE X, GE M, et al. in situ, ion exchange preparation of AgBr/Ag3PO4/HAP nanocomposite photocatalyst with enhanced visible light photocatalytic performance[J]. Mater Sci Semicond Process, 2015, 36: 71–77.
[14] ZHAO W, WANG Y, YANG Y, et al. Carbon spheres supported visible-light-driven CuO?BiVO4, heterojunction: Preparation, characterization, and photocatalytic properties[J]. Appl Catal B, 2012, 115-116(5): 90–99.
[15] BI Y, HU H, OUYANG S, et al. ChemInform abstract: Photocatalytic and photoelectric properties of Cubic Ag3PO4 sub-microcrystals with Sharp corners and edges[J]. Chem Commun, 2012, 43(29): 3748–3750.
[16] WANG H, GAO J, GUO T, et al. Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties[J]. Chem Commun, 2011, 48(2): 275–277.
[17] YANG, X, CAI, H, BAO, M, et al. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation[J]. Chem Eng J, 2018, 334: 355–376.
[18] XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic activity and stability Of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Appl Catal B, 2015, 164: 380–388.
[19] MING G, NA Z, ZHAO Y, et al. Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension [J]. Ind Eng Chem Res, 2012, 51(14): 5167–5173.
[20] WANG S, LI D, SUN C, et al. Highly efficient photocatalytic treatment of dye wastewater via visible-light-driven AgBr–Ag3PO4/MWCNTs[J]. J Mol Catal A: Chem, 2014, 383/384: 128–136.
[21] BRAUN A, AKURATI K K, FORTUNATO G, et al. Nitrogen doping of TiO2 photocatalyst forms a second eg state in the oxygen 1s NEXAFS pre-edge[J]. Physics, 2011, 114(1): 516–519. 
[22] FEYER V, PLEKAN O, RICHTER R, et al. Photoemission and photoabsorption spectroscopy of glycyl-glycine in the gas phase[J]. J Phys Chem A, 2009, 113(40): 10726–10733.
[23] GOMATHI DEVI L, KAVITHA R. ChemInform abstract: Review on modified N-TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms[J]. Cheminform, 2014, 4(44): 28265–28299.
[24] JUNGWON K, CHULWEE L, WONYONG C. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light[J]. Environ Sci Technol, 2010, 44(17): 6849–6854.
服务与反馈:
文章下载】【加入收藏
bt365体育在线投注_365体育投注在线体育赌博_365体育投注串关规则《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com