首页bt365体育在线投注365体育投注在线体育赌博365体育投注串关规则联系方式使用帮助常见问题ENGLISH
bt365体育在线投注
位置:首页 >> 正文
混合配体Cd-MOF的合成及其光催化降解性能
作者: 颖1 翟勃银1 梁宇宁1 张宏宇2 
单位:(1. 东北石油大学化学化工学院 石油与天然气化工省重点实验室 黑龙江 大庆 163318  2. 大庆石化公司炼油厂 黑龙江 大庆 163711) 
关键词:混合配体Cd-MOF 合成 表征 光催化降解性能 
分类号:O643.36
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 以四水硝酸镉、均苯三甲酸、乳酸和N,N-二甲基甲酰胺为原料,采用溶剂热合成方法,制备得到混合配体Cd-金属有机框架(MOF)材料。利用偏光显微镜、扫描电子显微镜、热重分析仪、Fourier红外光谱、X射线衍射仪、N2吸附–脱附分析、紫外–可见漫反射光谱等手段对其进行表征。以亚甲基蓝(MB)溶液为模拟污染物,室温条件下考察了该材料在紫外光下的光催化活性。研究表明:当混合配体Cd-MOF作为光催化剂时,当其用量为70 mg,MB初始浓度为40 mg/L、pH=8~10时,在2 h内降解率可达80%左右,而且混合配体Cd-MOF经过5次循环试验后仍能保持较稳定的光催化活性。

 A mixed ligand Cd-MOF hybrid material was prepared by a solvothermal synthesis method using cadmium tetrahydrate tetrahydrate, trimesic acid, lactic acid and N,N-dime-thylformamide as polarizing materials. The as-obtained samples were characterized by polarizing microscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, N2 absorption-desorption and ultraviolet-visible diffuse reflection spectroscopy. The methylene blue (MB) was used as a model organic pollutant, and the photocatalytic activity of the hybrid material under ultraviolet light at room temperature was examined. The results show that the degradation rate can reach 80% within 2 h when the mixed ligand Cd-MOF is used as a photocatalyst at the amount of 70 mg, the MB initial concentration of 40 mg/L, and the pH values of 8?10. Furthermore, the mixed ligand Cd-MOF can keep its photocatalytic stability after five recycles.

基金项目:
国家自然科学基金项目(51146008)。
作者简介:
参考文献:

 [1] DONG C, LU J, QIU B, et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions[J]. Appl Catal B, 2018, 222: 146–156.

[2] DAYI B, KYZY A D, ABDULOGLU Y, et al. Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta[J]. Dyes Pigments, 2018, 151:15–21.
[3] GHANEIAN M T, EHRAMPOUSH M H, EHSANZADEH E, et al. Upgrading secondary wastewater plant effluent by modified coagulation and flocculation, for water reuse in irrigation[J]. J Water Reuse Desal, 2017, 7(3): 298–306.
[4] MALEKI A, HAYATI B, NAGHIZADEH M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. J Ind Eng Chem, 2015, 28: 211–216.
[5] 高续春, 代宏哲, 赵鹏, 等. 微波法合成的氮化碳光催化降解苯酚及其机理[J]. 硅酸盐学报, 2017, 45(10): 1503–1509.
GAO Lianchun, DAI Hongzhe, ZHAO Peng, et al. J Chin Ceram Soc, 2017, 45(10): 1503–1509.
[6] KAMENEV I, VIIROJA A, KALLAS J. Aerobic bio-oxidation with ozonation for recalcitrant wastewater treatment[J]. J Adv Oxid Technol, 2016, 11(2): 338–347.
[7] TEH C Y, BUDIMAN P M, SHAK K P Y, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Ind Eng Chem Res, 2016, 55(16): 4363–4389.
[8] ASGHAR A, RAMAN A A A, DAUD W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review[J]. J Clean Prod, 2015, 87(2): 826–838.
[9] Omorogie M O, Babalola J O, Unuabonah E I, et al. Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii, seed biomass waste[J]. J Saudi Chem Soc, 2016, 20(1): 49–57.
[10] 陶丽琴, 赵义侠, 康卫民, 等. 聚四氟乙烯超细纤维负载二氧化钛光催化性能[J]. 硅酸盐学报, 2016, 44(1): 89–94. 
TAO Liqin, ZHAO Yixia, KANG Weimin, et al. J Chin Ceram Soc, 2016, 44(1): 89–94.
[11] PRAKASH K, KUMAR P S, LATHA P, et al. Design and fabrication of a novel metal-free SiO2/g-C3N4 nanocomposite: A robust photocatalyst for the degradation of organic contaminants[J]. J Inorg Organomet P, 2018, 28(1): 268–278. 
[12] 李翠霞, 吴强红, 曾鹏飞, 等. 氧化石墨烯-镝掺杂二氧化钛复合光催化材料的制备及光催化性能[J]. 硅酸盐学报, 2016, 44(6): 872–877.
LI Cuixia, WU Qianghong, ZENG Pengfei, et al. J Chin Ceram Soc, 2016, 44(6): 872–877.
[13] BHATTACHARYA S, BALA S, MONDAL R. Design of chiral Co(II)-MOFs and their application in environmental remediation and waste water treatment[J]. Rsc Adv, 2016, 6(30): 25149–25158.
[14] NASALEVICH M, BECKER R, FERNANDEZ E V R, et al. Co@NH2-MIL-125(Ti): Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production[J]. Energy Environ Sci, 2015, 8(1): 364–375.
[15] BHATTACHARYA S, BALA S, MONDAL R. Design of chiral Co(II)-MOFs and their application in environmental remediation and waste water treatment[J]. Rsc Adv, 2016, 6(30): 25149–25158. 
[16] JHUNG S H, KHAN N A, HASAN Z. Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption[J]. Crystengcomm, 2012, 14(21): 7099–7109. 
[17] GE Y, LI N Y, JI X Y, et al. Assembly of a series of zinc coordination polymers based on 1, 4-bis [2-(4-pyridyl) ethenyl]-2,3,5,6-tetramethylbenzene and 1,3-benzenedicarboxylate derivatives[J]. Crystengcomm, 2014, 16(29): 6621–6629.
[18] DAI M, SU X R, WANG X, et al. Three zinc (II) coordination polymers based on tetrakis (4-pyridyl) cyclobutane and naphthalenedicarboxylate linkers: Solvothermal syntheses, structures, and photocatalytic properties[J]. Cryst Growth Des, 2013, 14(1): 240–248.
[19] YIN W Y, HUANG Z L, TANG X Y, et al. Structural diversification and photocatalytic properties of zinc(II) polymers modified by auxiliary N-containing ligands[J]. New J Chem, 2015, 39(9): 7130–7139.
[20] DU J Q, DONG J L, XIE F, et al. Syntheses, structures, and properties of three mixed-ligand complexes based on 3,6-bis (imidazole-1-yl) pyridazine[J]. J Mol Struct, 2019, 1175: 754–762. 
[21] ZHU W, YANG X Y, LI Y H, et al. A novel porous molybdophosphate-based FeII, III-MOF showing selective dye degradation as a recyclable photocatalyst[J]. Inorg Chem Commun, 2014, 49: 159–162.
[22] QIN L, CHEN H Z, LEI J, et al. Photodegradation of some organic dyes over two metal-organic frameworks with especially high efficiency for safranine T[J]. Cryst Growth Des, 2017, 17(3): 1293–1298.
[23] LI H, HE Y, ZHAO W, et al. Designing different functional frameworks from 0D to 3D for exploring structural correlation with photocatalytic activity[J]. Polyhedron, 2017, 133: 412–418.
[24] 高倩, 谢亚勃, 张超艳, 等. 5,6-二羧基苯并咪唑双核铕配合物的合成、结构及荧光性能[J]. 无机化学学报, 2009, 25(5): 924–928.
GAO Qian, XIE Yabo, ZHANG Chaoyan, et al. Chin J Inorg Chem (in Chinese), 2009, 25(5): 924–928. 
[25] 郭征楠, 刘峥, 魏席, 等. 以1,2,4,5-苯四甲酸或1,2,3,4-丁烷四羧酸为配体的金属有机框架的合成、表征及性质[J]. 无机化学学报, 2016, 32(1): 9–17. 
GUO Zhengnan, LIU Zheng, WEI Xi, et al. Chin J Inorg Chem (in Chinese), 2016, 32(1): 9–17.
[26] 陈颖, 赵宇, 李静, 等. 共模板法一步合成绣球状BiOCl/Br固溶体光催化剂[J]. 高等学校化学学报, 2017, 38(11): 2045–2052.
CHEN Ying, ZHAO Yu, LI Jing, et al. Chem J Chin Univ (in Chinese), 2017, 38(11): 2045–2052.
服务与反馈:
文章下载】【加入收藏
bt365体育在线投注_365体育投注在线体育赌博_365体育投注串关规则《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com